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Abstract: - In this paper, we present a novel hybrid approach combining particle swarm optimization (PSO) and 
adaptive constraint-handling technique (ACT) for solving constrained numerical and engineering optimization 
problems. The proposed hybrid approach simultaneously adopts particle swarm optimizer and hybrid mutation 
operators to generate the offspring population. Additionally, the adaptive constraint-handling technique includes 
three main situations. In each situation, a constraint-handling mechanism is designed based on current 
population state. Our algorithm is validated using 15 well-known constrained numerical and engineering 
optimization problems reported in the literature. The experimental results demonstrate that the proposed 
method shows better performance in comparison to the state-of-the-art algorithms. 
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1 Introduction 
Constrained optimization problems are very 
important as they are encountered in many 
engineering applications. Conventional gradient-
based optimization methods have difficulties to 
handle constrained optimization problems may 
usually lack an explicit mathematical formulation 
and have discrete definition domains. Compared 
with gradient-based optimization methods, 
evolutionary algorithms are population-based global 
search techniques, not sensitive to the characteristics 
of the problems and easy to implement. During the 
past decade, using evolutionary algorithm to solve 
constrained optimization problems has attracted a 
lot of research interest, and a large number of 
constrained optimization evolutionary algorithms 
have been proposed [1-3]. 

It is necessary to note that evolutionary 
algorithms are unconstrained search methods and 
lack an explicit mechanism to bias the search in 
constrained search space. In essence, constrained 
optimization evolutionary algorithms can be 
considered as constraint-handling techniques plus 
evolutionary algorithms, i.e., a proper constraint- 
handling technique needs to be considered in 
conjunction with an appropriate evolutionary 
algorithm, and these two aspects, thereby, should be 
mainly responsible for the performance of 
constrained optimization evolutionary algorithms. 

As an important branch of evolutionary 
algorithms, particle swarm optimization (PSO) 
algorithm was originally introduced by Kennedy 
and Eberhart [4]. Similar to other evolutionary 
algorithms, PSO is a very simple population-based 
optimization technique which is at the same time 
very powerful and robust. PSO was originally 
designed for unconstrained optimization problems. 
However, being fascinated by the prospect and 
potential of PSO, many researchers have applied 
PSO to solve constrained optimization problems in 
the past decade [5-8]. 

Unlike the previous methods, this paper proposes 
a hybrid approach which combines a modified PSO 
algorithm with an adaptive constraint-handling 
technique to deal with constrained optimization 
problems. In the approach proposed, each particle in 
the population is applied to generate standard 
particle swarm optimizer and hybrid mutation 
operators. As a result, an offspring population is 
obtained. After combining the parent and offspring 
populations, an adaptive constraint-handling 
technique is designed. The proposed hybrid method 
is assessed on a total of fifteen constrained 
optimization problems to verify its performance. 
The experimental results show that it is very robust 
and effective for solving constrained optimization 
problems. 

 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wen Long, Shaohong Cai, Jianjun Jiao, Wenzhuan Zhang

E-ISSN: 2224-266X 55 Volume 15, 2016

mailto:lw6822@163.com,
mailto:gzcjdx_csh@163.com,
mailto:jianjj73@163.com,
mailto:zhangwz97@163.com


 
 
2 Particle Swarm Optimization 
Particle swarm optimization is a population-based 
and derivative-free global optimization method 
based on the adaptation process observed in 
flocking organisms, such as birds, bees, fish, when 
searching for regions with food availability with the 
ability to return to promising regions that have 
previously been discovered [4]. With the standard 
particle swarm optimization, each particle of the 
swarm adjusts its trajectory according to its own 
flying experience and the flying experiences of 
other particles within its topological neighborhood 
in a D-dimensional space S. The velocity and 
position of particle i are represented 
as ),,,( 21 iDiii vvvv 



= and ),,,( 21 iDiii xxxx 



= , 
respectively. Its best historical position is recorded 
as ),,,( 21 iDiii pppp 



= , which is also called bestP . 
The best historical position that the entire swarm has 
passed is denoted as ),,,( 21 gDggg pppp 



= , which 

is also called bestg . The velocity and position of 
particle i on dimension ),,2,1( Ddd == in 
iteration 1+t  are updated as follows: 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))id id id id gd idv t v t c r p t x t c r p t x tω+ = + − + −

                                        
(1)            

( 1) ( ) ( 1)id id idx t x t v t+ = + +               
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whereω is a parameter called the inertia weight, t is 
current iteration number, 1c and 2c  are positive 
constants referred to as cognitive and social 
parameters, respectively, and 1r and 2r are random 
numbers generated from a uniform distribution in 
the region of [0,1]. 
3 Description of Proposed Approach 
 
3.1 Algorithm framework 
In this paper, the degree of constraint violation of a 
particle x on the jth constraints is calculated using 
the following expression: 
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reflects the degree of constraint 

violation of the particle x . 
The proposed hybrid method (is called PSO-

ACT) procedure is shown in Fig. 1. 
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Fig.1. The framework of PSO-ACT 
 

Coupling PSO algorithm and adaptive constraint-
handling technique is (is called PSO-ACT) therefore 
given as: 

Step 1 Set : 0t = . Set parameter. Initialize a set of 
particle position and velocities by good point-set 
method from the decision space. Evaluate the 
objective function value f and the degree of 
constraint violations G for each particle in the 
initialization population. 

Step 2 Generate new population 1( )P t by update 
the velocity and position of each particle according 
to Eqs. (1) and (2). Generate new population 2 ( )P t  
by hybrid mutation operators. Note that the PSO 
iteration and the hybrid mutation operators are 
applied in parallel rather than sequentially. Evaluate 
the f value and G value for each particle in 

1 2( ) ( )P t P t∪ . 
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Step 3 Select N (denote population size) 
particles from 1 2( ) ( ) ( )P t P t P t∪ ∪ to form the next 
population ( 1)P t +  based on adaptive constraint-
handling technique that will be specified later. 

Step 4 Set : 1t t= + . 
Step 5 If stopping criterion is met, stop and 

return the optimal solution in ( )P t , else go to 
Step 2. 
3.2 Hybrid mutation operators 
According to the update equations (1) and (2), the 
personal best position of the particle will gradually 
move closer to the global best position. Therefore, 
all the particles will converge onto the global best 
particle’s position. Because of this mechanism, PSO 
algorithm can’t guarantee to find the global minimal 
value of a function. In fact, the particles usually 
converge to local optima. To overcome the 
weakness of PSO algorithm, the hybrid mutation 
operators is introduced to generate new offspring 
particles. The reason for using such a mutation 
strategy is to increase the probability of escaping 
from a local optimum. It is worth noting that the 
hybrid mutation operators for the global best 
particle contain two components, i.e., Cauchy 
mutation and diversity mutation. A particle takes 
part in Cauchy mutation or diversity mutation with a 
probability of 0.5. Thus, no particle is subject to 
both mutation operators in the same generation. 

The Cauchy mutation operator is described as 
follows [9]: 

exp( )gd gdv v µ′ =                        (4) 
gd gd gd gx x v µ′ ′= +                        (5) 

where gdx and gdv represent the position and velocity 

of the global best particle. µ and gµ denote Cauchy 
random numbers with the scale parameter of 1. 

The diversity mutation operator is described as 
follows [10]: 

To perform diversity mutation on a chosen 
particle ),,,( 21 nxxxx 



= , randomly generate an 

integer randi between 1 and n with probability 1 n  
and a real number between il and iu , and then 
replace the randi th component of the chosen particle 
by the real number to get a new particle 

),,,( 21 nxxxx ′′′=′ 



. The above procedure can be 
denoted by the following expression: 
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where )1,0(U∈β and )1,0(U is a uniform random 
number generator in the range [0,1]. 

3.3 Adaptive constraint-handing technique 
In general, for constrained optimization, the 
combined population 1 2( ) ( ) ( )P t P t P t∪ ∪  may 
inevitably experience three situations [10]: 1) the 
population contains in-feasible particles only (in-
feasible situation); 2) the population consists of both 
feasible and in-feasible particles (semi-feasible 
situation); and 3) the population is entirely 
composed of feasible particles (feasible situation). 
In this paper, one constraint-handling mechanism is 
designed for one situation. 

 
3.3.1 The in-feasible situation  
In this situation, since the combined population 

1 2( ) ( ) ( )P t P t P t∪ ∪  contains no feasible particles, 
the aim is to promptly motivate the population 
toward the feasible region. In general, for 
constrained optimization, it does not make sense if a 
particle is far away from the boundaries of the 
feasible region. In addition, finding feasible 
particles is the most important objective in this 
situation. Thus, we only concerned with those 
particles with fewer constraint violations in the 
population. Firstly, the particles in the combined 
population 1 2( ) ( ) ( )P t P t P t∪ ∪  are ranked based on 
their constraint violations in ascending order, and 
then some excellent particles with least constraint 
violations are selected and form the offspring 
population. This scheme tends to guide the 
population toward feasibility from various 
directions. 
 
3.3.2 The semi-feasible situation  
In this situation, since the combined population 

1 2( ) ( ) ( )P t P t P t∪ ∪  consists of a combination of 
feasible and in-feasible particles, the aim is to 
maintain a reasonable proportion between feasible 
and in-feasible particles in the current population. 
Additionally, to keep the diversity and balance the 
exploration and exploitation ability of the 
population, some important feasible particles 
(feasible particles with small objective function 
values) and in-feasible particles (in-feasible 
particles with low constraint violation) should 
survive into the next generation since such particles 
are very promising for searching the optimal 
solution. 

Firstly, the particles in the combined population 
1 2( ) ( ) ( )P t P t P t∪ ∪  are ranked based on their 

constraint violations in ascending order and their 
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objective function values in ascending order, 
respectively, and then randomly generate a real 
numberε between 0 and 1, if real number 0.5ε ≥ , 
some excellent particles with least constraint 
violations are selected and form the offspring 
population; otherwise, some excellent particles with 
small objective function values are selected and 
form the offspring population. By this scheme, some 
potential feasible and in-feasible particles may 
survive into the next generation. 

 
3.3.3 The feasible situation  
In this situation, since the combined population 

1 2( ) ( ) ( )P t P t P t∪ ∪  is composed of feasible 
particles only, constrained optimization problems 
can be considered as unconstrained optimization 
problems. Furthermore, since the ultimate goal of 
constrained optimization evolutionary algorithms 
are to find the feasible optimal solution. Therefore, 
the comparison of particles is based only on the 
objective function values. Afterward, some excellent 
particles with the small objective function values are 
selected for the next generation. 
 
4 Experimental Study 
 
4.1 Benchmark test functions 
Numerical simulations were executed based on 13 
well-known benchmark test functions [3] to evaluate 
the performance of the proposed hybrid method. 

Note that test functions g02, g03, g08, and g12 are 
maximization problems, and the others are 
minimization problems. In this study, the 
maximization problems are transformed into 
minimization using )(xf − . In addition, only test 
functions g03, g05, g11, and g13 contain equality 
constraints. 

The following parameters are established 
experimentally for the best performance of PSO-
ACT: the population size 200N = , the acceleration 
constants 1 2 1.496180c c= = , the inertia weight 

0.729844ω = , the tolerant value 10 06eδ = − . In 
addition, as the Cauchy mutation or the diversity 
mutation occurs with a probability of 0.5 for each 
particle in the population. The above parameter 
settings are kept for all experiments. The number of 
fitness function evaluations (FFEs) is fixed to 
240,000. In this paper, 30 independent runs are 
performed for each test function. 

4.2 Experimental results 
Table 1 exhibits the overall performance of our 
PSO-ACT. This table shows the “known” optimal 
solution for each test function and the “best”, 
“median”, “mean”, “worst”, and standard deviations 
of the objective function values achieved by PSO-
ACT.

Table 1. Experimental results obtained by PSO-ACT for 13 test functions over 30 independent runs 
Function Known optimal Best Median Mean Worst St.dev 
g01 
g02 
g03 
g04 
g05 
g06 
g07 
g08 
g09 
g10 
g11 
g12 
g13 

-15.0000000 
-0.80361910 
-1.00050010 
-30665.53867 
5126.496714 
-6961.813876 
24.30620907 
-0.09582504 
680.6300574 
7049.248021 
0.749900000 
-1.00000000 
0.053941514 

-15.0000000 
-0.80359815 
-1.00000000 
-30665.53867 
5126.498110 
-6961.813876 
24.30620907 
-0.09582504 
680.6300574 
7049.248096 
0.749999000 
-1.00000000 
0.053949848 

-15.0000000 
-0.77683374 
-1.00000000 
-30665.53867 
5126.498110 
-6961.813876 
24.30620907 
-0.09582504 
680.6300574 
7049.248173 
0.749999000 
-1.00000000 
0.053949848 

-15.0000000 
-0.76928989 
-1.00000000 
-30665.53867 
5126.498110 
-6961.813876 
24.30620907 
-0.09582504 
680.6300574 
7049.248168 
0.749999000 
-1.00000000 
0.053949848 

-15.0000000 
-0.71849287 
-1.00000000 
-30665.53867 
5126.498110 
-6961.813876 
24.30620907 
-0.09582504 
680.6300574 
7049.248283 
0.749999000 
-1.00000000 
0.053949848 

6.44E-09 
2.56E-02 
7.32E-14 
1.82E-12 
1.36E-12 
1.02E-12 
8.38E-10 
0.00E+00 
5.68E-14 
7.33E-05 
0.00E+00 
0.00E+00 
1.97E-15 

 
As shown in Table 1, PSO-ACT has the ability to 

consistently converge to the global optima for seven 
test functions, i.e. g01, g04, g06, g07, g08, g09, and 
g12. With respect to the rest of the test functions (i.e. 
g02, g03, g05, g10, g11, and g13), although the 
optimal solutions are not consistently found, the 
“best” results achieved are fairly close to the global 
optimal values known. The test function g02 has 
many local optima with high peak near the global 

optimal solution. The resulting solutions achieved 
for test function g02 have been exhibited in Fig. 2. 
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Fig.2. Plots show the number of trials versus the quality 

of the resulting solutions achieved for function g02 
It is noteworthy that the standard deviations over 

30 independent runs for all test functions are fairly 
small. In particular, the standard deviation for test 
functions g08, g11, and g12 are equal to 0. In 
addition, the “mean” and “worst” results provided 
by PSO-ACT are very near the “best” results 
obtained, which indicates that the performance of 
PSO-ACT is very stable in producing consistent 

results for all test functions. Moreover, the 
computational cost of PSO-ACT is 240000 FFEs for 
all test functions. The above discussion validates 
that PSO-ACT is an effective and efficient method 
for constrained optimization. 

4.3 Comparison with the other methods 
In order to further verify the performance of PSO-
ACT, the results of our algorithm are compared 
against five typical state-of-the-art approaches from 
the literatures, including the self-adaptive velocity 
particle swarm optimization (SAVPSO) [2], the 
constrained multi-swarm particle swarm 
optimization (CPSO) [5], the improved vector 
particle swarm optimization (IVPSO) [7], the 
constraint- handling mechanism for particle swarm 
optimization (CHMPSO) [11], and the hybrid 
particle swarm optimization and differential 
evolution (PSO-DE) [12]. Among these algorithms, 
CPSO is one of the most competitive PSO 
algorithms known to date. The comparison results 
are listed in Table 2-4. 

Table 2. Comparing of the proposed PSO-ACT with respect to other algorithms on the best solutions (NA 
means not available) 

Function Optimal SAVPSO[2] IVPSO[7] CHMPSO[11] PSO-DE[12] CPSO[5] PSO-ACT 
g01 
g02 
g03 
g04 
g05 
g06 
g07 
g08 
g09 
g10 
g11 
g12 
g13 

-15.00000000 
-0.803619104 
-1.000500100 
-30665.53867 
5126.4967140 
-6961.813876 
24.306209068 
-0.095825042 
680.63005737 
7049.2480205 
0.7499000000 
-1.000000000 
0.0539415140 

-15 
-0.803443 
-1.0048 
-30665.539 
5126.4841 
-6961.81388 
24.319 
-0.095825 
680.632 
7054.1256 
0.749000 
-1.000000 
0.0538666 

-15 
-0.803619 
-1.005010 
-30665.539 
5126.492646 
-6961.813876 
24.306497 
-0.095825 
680.630 
7049.351110 
0.749000 
-1.000000 
0.053988 

-15 
-0.803432 
-1.004720 
-30665.5 
5126.64 
-6961.81 
24.3511 
-0.095825 
680.638 
7057.5900 
0.749999 
-1.000000 
0.068665 

-15.000000 
-0.8036145 
-1.0050100 
-30665.539 
NA 
-6961.8139 
24.306209 
-0.095826 
680.63006 
7049.2480 
0.749999 
-1.000000 
NA 

-15.00000000 
-0.803619104 
-1.000500100 
-30665.53867 
5126.4967140 
-6961.813876 
24.306209068 
-0.095825042 
680.63005737 
7049.2480205 
0.7499000000 
-1.000000000 
0.0539415140 

-15.0000000 
-0.80359815 
-1.00000000 
-30665.53867 
5126.498110 
-6961.813876 
24.306209068 
-0.095825042 
680.63005737 
7049.248096 
0.749999000 
-1.00000000 
0.053949848 

 
Table 3. Comparing of the proposed PSO-ACT with respect to other algorithms on the mean solutions (NA 

means not available) 
Function Optimal SAVPSO[2] IVPSO[7] CHMPSO[11] PSO-DE[12] CPSO[5] PSO-ACT 
g01 
g02 
g03 
g04 
g05 
g06 
g07 
g08 
g09 
g10 
g11 
g12 
g13 

-15.00000000 
-0.803619104 
-1.000500100 
-30665.53867 
5126.4967140 
-6961.813876 
24.306209068 
-0.095825042 
680.63005737 
7049.2480205 
0.7499000000 
-1.000000000 
0.0539415140 

-14.7151 
-0.740577 
-1.0034 
-30665.539 
5202.3627 
-6961.81388 
24.989 
-0.095825 
680.655 
7173.2661 
0.749000 
-1 
0.552753 

-15 
-0.769889 
-1.005010 
-30665.539 
5126.492646 
-6961.81388 
24.429646 
-0.095825 
680.630 
7069.885232 
0.749000 
-1.000000 
0.462385 

-15 
-0.790406 
-1.003814 
-30664.5 
5461.081333 
-6961.81 
25.355771 
-0.095825 
680.852393 
7560.047857 
0.750107 
-1.000000 
1.716426 

-15.000000 
-0.756678 
-1.0050100 
-30665.539 
NA 
-6961.8139 
24.306210 
-0.0958259 
680.63006 
7049.2480 
0.749999 
-1.000000 
NA 

-15.00000000 
-0.801653204 
-1.000500100 
-30665.53867 
5126.4967140 
-6961.813876 
24.306209068 
-0.095825042 
680.63005737 
7049.2480205 
0.7499000000 
-1.000000000 
0.0539415188 

-15.0000000 
-0.76928989 
-1.00000000 
-30665.53867 
5126.498110 
-6961.813876 
24.30620907 
-0.09582504 
680.6300574 
7049.248168 
0.749999000 
-1.00000000 
0.053949848 
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Table 4. Comparing of the proposed PSO-ACT with respect to other algorithms on the worst solutions (NA 
means not available) 

Function Optimal SAVPSO[2] IVPSO[7] CHMPSO[11] PSO-DE[12] CPSO[5] PSO-ACT 
g01 
g02 
g03 
g04 
g05 
g06 
g07 
g08 
g09 
g10 
g11 
g12 
g13 

-15.00000000 
-0.803619104 
-1.000500100 
-30665.53867 
5126.4967140 
-6961.813876 
24.306209068 
-0.095825042 
680.63005737 
7049.2480205 
0.7499000000 
-1.000000000 
0.0539415140 

-12.4531 
-0.631598 
-0.9976 
-30665.539 
5520.1467 
-6961.81388 
26.194 
-0.095825 
680.699 
7335.2477 
0.749021 
-1 
1.856102 

-15 
-0.703477 
-1.005010 
-30665.539 
5126.492646 
-6961.81388 
25.004855 
-0.095825 
680.630139 
7251.241769 
0.749000 
-1.000000 
0.996901 

-15 
-0.750393 
-1.002490 
-30665.5 
6104.75 
-6104.75 
24.374 
-0.095825 
681.553000 
8104.310000 
0.752885 
-1.000000 
13.669500 

-15.000000 
-0.6367995 
-1.0050100 
-30665.539 
NA 
-6961.8139 
24.3062 
-0.0958259 
680.6301 
7049.2482 
0.750001 
-1.000000 
NA 

-15.00000000 
-0.784076104 
-1.000500100 
-30665.53867 
5126.4967140 
-6961.813876 
24.306209068 
-0.095825042 
680.63005737 
7049.2480205 
0.7499000000 
-1.000000000 
0.0539415825 

-15.0000000 
-0.71849287 
-1.00000000 
-30665.53867 
5126.498110 
-6961.813876 
24.30620907 
-0.09582504 
680.6300574 
7049.248283 
0.749999000 
-1.00000000 
0.053949848 

 
As shown in Tables 2-4, the performance of the 

proposed PSO-ACT is compared in detail with the 
five algorithms in terms of the selected performance 
metrics. Results found by all algorithms for 
functions g01, g08, and g12 were largely in accord 
with each other. With respect to SAVPSO, the 
proposed method finds better “best” results in seven 
problems (g02, g04, g06, g07, g08, g09 and g10) 
and similar “best” results in two problems (g01 and 
g12). Also, the proposed PSO-ACT reaches better 
“mean” and “worst” results in nine problems (g01, 
g02, g04, g05, g06, g07, g09, g10 and g13). Similar 
“mean” and “worst” results are found in two 
problems (g08 and g12). Compare with IVPSO, the 
proposed PSO-ACT provides similar “best”, “mean”, 
and “worst” results for three problems (g01, g06 and 
g12). Better “best” and “mean” results are found by 
IVPSO in four problems (g02, g03, g05 and g11). 
Also, the proposed PSO-ACT reaches better “best” 
results in five test functions (g04, g07, g08, g09 and 
g10) and “mean” and “worst” results in eight 
problems (g02, g04, g06, g07, g08, g09, g10 and 
g13). With respect to CHMPSO, the proposed PSO-
ACT provides better “best”, “mean” and “worst” 
results in ten problems (g02, g04, g05, g06, g07, 
g08, g09, g10, g11 and g13) and similar results in 
two test functions (g01 and g12). Compare with 
PSO-DE, PSO-ACT finds better results in eight 
problems (g04, g05, g06, g07, g08, g09, g10 and 
g13) and similar results in three test functions (g01, 
g11 and g12). A better “best” result is found by 
PSO-DE in test function g02; however, PSO-ACT 
reaches better “mean” and “worst” results. CPSO is 
one of the most competitive constrained PSO 
algorithms known to date. With respect to CPSO, 
PSO-ACT finds similar results in eight problems 
(g01, g04, g06, g07, g08, g09, g11 and g12) and 
worse results in five test functions (g02, g03, g05, 
g10 and g13). 

As a general remark on the comparison above, 
PSO-ACT shows a very competitive performance 
with respect to five state-of-the-art algorithms in 
terms of the quality, the robustness, and the 
efficiency of search. 

4.4 Engineering design optimization 
In order to further study the performance of PSO-
ACT on real-world engineering constrained 
optimization problems, two well-studied 
engineering design optimization cases are solved 
using this approach. The parameter settings are the 
same as those used by the previous experiments for 
13 benchmark test functions except for the number 
of FFEs. 
 
4.4.1 Pressure vessel design 
In this case, a cylindrical pressure vessel with two 
hemispherical heads is designed for minimum 
fabrication cost. Four variables are identified: 
thickness of the pressure vessel 1( )sT x , thickness of 
the head 2( )hT x , inner radius of the vessel 3( )R x , and 
length of the vessel without heads 4( )L x (see Fig. 3).  

RR

LTh Ts

 
 

Fig.3. Schematic view of pressure vessel design 
This problem has been solved previously using 

GA3, Gaussian quantum-behaved particle swarm 
optimization method (GQPSO), CEPSO, HPSO, 
hybrid Nelder-Mead simplex search particle swarm 
optimization (NMPSO) and CDE [13]. Table 5 
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shows the comparisons of the best solutions 
obtained by the proposed PSO-ACT and other 

compared approaches. 

Table 5. Comparison of the best solution obtained from various studies for the pressure vessel design 
Design 
variables 

GA3[13] CEPSO[13] GQPSO[13] NMPSO[13] HPSO[13] CDE[13] PSO-ACT 

x1(Ts) 
x2(Th) 
x3(R) 
x4(L) 
g1(x) 
g2(x) 
g3(x) 
g4(x) 
f(x) 

0.8125 
0.4375 
42.0974 
176.6540 
-2.01E-03 
-3.58E-02 
-24.7593 
-63.3460 
6059.9463 

0.8125 
0.4375 
42.0913 
176.7465 
-1.37E-06 
-3.59E-04 
-118.7687 
-63.2535 
6061.0777 

0.8125 
0.4375 
42.0984 
176.6372 
-8.79E-07 
-3.58E-02 
-0.2179 
-63.3628 
6059.7208 

0.8036 
0.3972 
41.6392 
182.4120 
3.65E-05 
3.79E-05 
-1.5914 
-57.5879 
5930.3137 

0.8125 
0.4375 
42.0984 
176.6366 
-8.80E-07 
-3.58E-02 
3.1226 
-63.3634 
6059.7143 

0.8125 
0.4375 
42.0984 
176.6376 
-6.67E-07 
-3.58E-02 
-3.705123 
-63.3623 
6059.7340 

0.8125 
0.4375 
42.098445 
176.636595 
-1.15E-08 
-3.59E-02 
4.58E-02 
-63.3634 
6059.714215 

 
Table 6. Statistical results of different methods for pressure vessel design 

Feature GA3[13] CEPSO[13] GQPSO[13] NMPSO[13] HPSO[13] CDE[13] PSO-ACT 

Best 
Mean 
Worst 
Std. 

6059.9463 
6177.2533 
6469.3220 
130.9297 

6061.0777 
6147.1332 
6363.8041 
86.4500 

6059.7208 
6440.3786 
7544.4925 
448.4711 

5930.3137 
5946.7901 
5960.0557 
9.1610 

6059.7143 
6099.9323 
6288.6770 
86.2000 

6059.7340 
6085.2303 
6371.0455 
43.0130 

6059.714215 
6059.714215 
6059.714215 
1.01E-12 

 
The comparison of obtained statistical results for 

the proposed PSO-ACT with previous studies 
including GA3, CEPSO, GQPSO, NMPSO, HPSO, 
and CDE is presented in Table 6. As can be seen 
from Table 6, the proposed PSO-ACT obtained the 
best solution in 35000 FFEs which is superior to 
other considered algorithms except for NMPSO. 

4.4.2 Tension/compression string design 

The tension/compression string design problem is 
described in Eskandar [13] for which the objective 
is to minimize the weight ( ( )f x ) of a tension/ 
compression string (as shown in Fig. 4) subject to 
constraints on minimum deflection, shear stress, 
surge frequency, limits on outside diameter and on 
design variables. The independent variables are the 

wire diameter 1( )d x , the mean coil diameter 2( )D x , 
and the number of active coils 3( )P x . 

D
P

P

d  
 

Fig.4. Tension/compression string design 
The approaches applied to this problem for 

comparisons include GA3, CEPSO, HPSO, NMPSO, 
QPSO, GQPSO, DEDS, and PSO-DE. The best 
solutions obtained by the above approaches and 
PSO-ACT are listed in Table 7, and the statistical 
results are shown in Table 8. 

Table 7. Comparison of the best solution obtained from various studies for tension/compression string design 
Design 
variables 

GA3[13] CEPSO[13] GQPSO[13] NMPSO[13] HPSO[13] PSO-DE[13] PSO-ACT 

x1(d) 
x2(D) 
x3(P) 
g1(x) 
g2(x) 
g3(x) 
g4(x) 
f(x) 

0.051989 
0.363965 
10.890522 
-1.26E-03 
-2.54E-05 
-4.061337 
-0.722697 
0.0126810 

0.051728 
0.357644 
11.244543 
-8.25E-04 
-2.52E-05 
-4.051306 
-0.727085 
0.0126747 

0.051515 
0.352529 
11.538862 
-4.83E-05 
-3.58E-05 
-4.0455 
-0.73064 
0.012665 

0.051620 
0.355498 
11.333272 
1.01E-03 
9.94E-04 
-4.061859 
-0.728588 
0.012630 

0.051706 
0.357126 
11.265083 
NA 
NA 
NA 
NA 
0.0126652 

0.0516888 
0.3567117 
11.289320 
NA 
NA 
NA 
NA 
0.0126652 

0.05168906 
0.35671774 
11.2889656 
-1.98E-13 
1.51E-13 
-4.0537856 
-0.7277288 
0.01266523 

 
Table 8. Statistical results of different approaches for tension/compression string design 

Feature GA3[13] CEPSO[13] GQPSO[13] NMPSO[13] HPSO[13] PSO-DE[13] PSO-ACT 

Best 
Mean 
Worst 
Std. 

0.012681 
0.012742 
0.012973 
5.90E-05 

0.012674 
0.012730 
0.012924 
5.20E-04 

0.012665 
0.013524 
0.017759 
1.27E-03 

0.012630 
0.012631 
0.012633 
8.47E-07 

0.012665 
0.012707 
0.012719 
1.58E-05 

0.012665 
0.012665 
0.012665 
1.20E-08 

0.01266523 
0.01266523 
0.01266523 
2.74E-10 
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From Table 7, it can be observed that the 

proposed PSO-ACT is robust and find solutions in 
24000 FFEs which are better than the “best” 
solution found by GA3 and CEPSO. With respect to 
GQPSO, HPSO, and PSO-DE, the proposed PSO-
ACT finds similar “best” results. A better “best” 
solution is obtained by NMPSO. As can be seen 
from Table 8, compare with GA3, CEPSO, GQPSO, 
and HPSO, the proposed PSO-ACT provides better 
results for tension/compression string design 
problem. With respect to PSO-DE, the proposed 
PSO-ACT reaches similar results. 

Based on the aforementioned simulation and 
comparison results validate that the proposed PSO-
ACT has the substantial capability in handling 
various constrained optimization problems and its 
solution quality is quite stable. So, it can be 
concluded that the proposed PSO-ACT is a good 
alternative for constrained optimization. 
 
5 Conclusion 
In this paper, we have presented the hybrid approach 
coupling particle swarm optimization and adaptive 
constraint-handling technique for general nonlinear 
constrained optimization problems and engineering 
design optimization problems. In the approach 
proposed, each particle in the population is applied 
to generate standard particle swarm optimizer and 
hybrid mutation operators. As a result, an offspring 
population is obtained. It is worthwhile to note that 
the standard particle swarm optimizer and the 
hybrid mutation operation are implemented 
concurrently and that the Cauchy mutation or 
diversity mutation is applied to a particle in the 
population with a probability of 0.5. After 
combining the parent and offspring populations, an 
adaptive constraint-handling technique is designed. 
The approach has been tested experimentally based 
numerical and engineering constrained design 
optimization problems. The experimental results 
indicate that the proposed hybrid method is very 
suitable for constrained optimization problems with 
different types and that it is superior to or 
competitive with the compared approaches. The 
future work will be focused on extension of the 
approach to solve multi-objective problems. 
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